ICES NWWG Report 2018

ICES Advisory Committee
ICES CM 2018 / ACOM:09

Report of the North Western Working Group
 (NWWG)

26 April - 3 May 2018
ICES HQ, Copenhagen, Denmark

DRAFT

8.1 Stock description and management units

Description of the stock and management units is provided in the stock annex.

8.2 Fisheries-dependent data

8.2.1 Landings, advice and TAC

Landings of saithe in Icelandic waters in 2017 are estimated to have been 49200 t (Table 8.1 and Figure 8.1). Of the landings, 44200 t were caught by trawl, 1346 t by gillnets, and the rest caught by other fishing gear. The domestic as well as ICES advice for the fishing year 2016/2017 was based on the 20% harvest control rule and was 55 kt . The TAC issued was also 55 kt but the landings are now estimated to be 45000 tons. Part of the low catch is caused by a strike by the fishing fleet from December 2016 - February 2017 (figure 8.2). The trajectory of the landings in the current fishing year and calendar year is shown in Figure 8.2 indicating that the TAC of 60 kt might be reached.
Most of the catch is caught in bottom trawl (83% in 2010-2017), with gillnet and jiggers taking the majority of the rest, 5% each fleet. The share taken by the gillnet fleet was larger in the past, 26% in 1982-1996 compared to 9% in 1997-2016 (Figure 8.1). Saithe does not appear much in the longline fishery that has been increasing in last 20 years. The share of longlines has though gradually been increasing from 0.8% before 2000 to 2.2% in last 4 years.

8.2.2 Landings by age

Catch in numbers by age based on landings are listed in Table 8.2. Discarding is not considered to be a problem in the Icelandic saithe fisheries, with an estimated discard proportion of 0.1% (annual reports by Palsson et al. 2003 and later). Since the amount of discards is likely to be small, not taking discards into account in the total catches and catch in numbers is not considered to have major effect on the stock assessment.
In 2017 sea samples constitute about 80% of the length measured fish that is used in the calculation of the catch in number and 84% of the length samples. 88% of the length samples are taken from trawl that is accounting for 90% of the catches. On the other hand only 43% of the aged otoliths come from sea samples.

The sampling program was slightly revised in 2013 and 2014, but the approach used for calculating catch in numbers has not changed. In 2013, the sampling frequency was reduced for bottom trawl, while the sampling frequency was increased for gillnets, jiggers, and demersal seine in 2014. Also in 2014, the number of otoliths from each sample was halved from 50 to 25 for all fishing gears. These revisions in the sampling program were based on the analysis of Thordarson (2012) and lead to approximately 50% reduction in the number of age samples.

The sampling in 2017 was considerably less than in 2016 and earlier years, approximately 30% less in bottom trawl but 70% less in the other gears. The reason for this reduction in sampling but the strike in January - February has some effects, most on the number of gillnet samples.
The age and length sampling in 2017 is indicated in the following table:

	Landings (t)	No. of otolith samples	No. of otoliths read	No. of length samples	No. of length measurements
Long lines	802	0	0	0	199
Gillnets	1346	2	46	3	375
Jiggers	1182	2	48	4	291
Danish seine	905	2	50	3	561
Bottom trawl	44234	50	1226	125	23830
Other gear	596	0	0	0	0
Total	49057	83	1370	135	25057

Foreign landings that are 270 tonnes are included in the numbers above. They are mostly caught by longlines (71 tonnes) and handlines (105 tonnes) .

Two age-length keys are used to calculate catch at age, one key for the gillnet catch and another key for other gears combined. The same length-weight relationship ($W=0.02498^{*} L^{\wedge} 2.75674$) is applied to length distributions from both fleets.
In recent years increased proportion of saithe catches has been caught north-west of Iceland (figure 8.3). This situation could lead to potential problem, if the sampling effort does not follow distribution in the catches. To look at this problem catch in numbers were recompiled using 12 cells, 3 gear (bottom trawl, gillnets and handlines), 2 areas (north and south) and 2 time periods (Jan-May and June-Dec). The resulting catch in numbers are nearly identical (figure 8.6) and using it in assessment leads to less than 1% difference of reference biomass. Catch in number 2017 is somewhat different from last year's prediction (figure 8.5). More is caught of age 5 but less of most other age groups.

8.2.3 Mean weight and maturity at age

Weights of ages 3-6 have been low in recent years, but older ages are close to average weight (Table 8.3 and Figures 8.7 and 8.8). The large 2012 yearclass has the lowest mean weight of all yearclasses, both in catches and in the survey. This is in line with density dependent growth that has been observed in this stock and can for example be seen for yearclasses 1984 and 2000 that are both large. Yearclasses 2013 and 2014 that seem to be large have higher mean weight at age than the 2012 yearclass. The long-term trend since 1980 has been a gradual decline in the weight of all ages.

Weighs at age in the landings are used to compile the reference biomass (B4+) that is the basis for the catch advice. Catch weights are also used to compile the spawning stock. Catch weights for the assessment year are predicted by applying a linear model using survey weights in the assessment year and the weight of the same year class in catches in the previous year as predictors (Magnusson 2012).

Maturity at ages 4-9 has decreased in recent years and is currently around average (Table 8.4 and Figure 8.9). A model using maturity at age from the Icelandic groundfish spring survey is used to derive smoothed trends in maturity by age and year (see stock annex).

8.2.4 Logbook data

Commercial CPUE indices are not used for tuning in this assessment. Although these indices have been explored for inclusion in the past, they were not considered for inclusion in the benchmark (ICES 2010), as the trends in CPUE are considered unreliable as an indicator of changes in abundance.

8.3 Scientific surveys

In the benchmark in 2010, spring survey data were considered superior to the autumn survey for calibrating the assessment, both due to more stations (lower CV) and longer time series. Saithe is among the most difficult demersal fishes to get reliable information on from bottom trawl surveys. In the spring survey, which has 500-600 stations, a large proportion of the saithe is caught in relatively few hauls and there seems to be considerable inter-annual variability in the number of these hauls.

The survey biomass indices fluctuated greatly in 1985-1995, but were consistently low in 1995-2001. Since 1995 the indices have been variable but compared to the period 1985-1995 the variability seems "real" rather than noise. This difference is also seen by the estimated confidence intervals of the indices that are smaller after 1995. In 2018 the indices are the highest in the series and have tripled since 2014. (Table 8.5 and Figure 8.10). Most of the increase is caused by the 2012 yearclass that was strong in the surveys 2015-2017 (figure 8.12).

The high index in March 1986 (figure 8.10) is mostly the result of one large haul that is scaled down to the second largest haul when compiling indices for tuning. The scaling is from 16 tons to 1 ton.

When last benchmark was conducted (2010) the survey series for the autumn survey was relatively short and not considered suitable for tuning but "burn in period" of a survey is longer when the indices are noisy. This might change in the next benchmark and the 2004 autumn survey might require "special treatment" like the 1986 survey in March.
Internal consistency in the March survey measured by the correlation of the indices for the same year class in 2 adjacent surveys is relatively poor, with R^{2} close to 0.35 where it is highest.
Young saithe tend to live very close to shore, so it is not surprising that survey indices for ages 1 and 2 are poor measures of recruitment, and the number of young saithe caught in the survey is very low.
The biomass index from the March survey indicates that the stock is at the highest level in the series (the 1986 value is considered an outlier) and has been increasing rapidly since 2014. The autumn survey shows the stock at its highest level (2004 is an outlier) but the vales before 2000 might be underestimate due to stations added in 2000 (figure 8.4) where some saithe is found The upward trend of last 3 years is not as strong in the autumn survey indices that are noisier than the indices from the March survey. Indices from the gillnet survey conducted south and west of Iceland since 1996 have been high from 2015-2018. (figure 8.11). The gillnet survey is mostly targeting large saithe (mean weight in 2016 was 6.7 kg). To summarize all the surveys indicate that the stock is relatively large in 2018.

8.4 Assessment method

In accordance with the recommendation from the benchmark (ICES 2010), a separable forward-projecting statistical catch-age model, developed in AD Model Builder, is used to fit commercial catch at age (ages 3-14 from 1980 onwards) and survey indices at age (ages 2-10 from 1985 onwards). The selectivity pattern is constant within each period (Figure 8.13). Natural mortality is set at 0.2 for all ages.
The commercial catch-at-age residuals (Figure 8.18) are relatively small in 2017 for younger ages. The survey residuals (figure 8.17) show positive values in 2018 for ages $4-6$, the age groups accounting for most of the biomass. The survey catch-at-age residuals (Figure 8.17) have year blocks with all residuals being only negative or only positive in some years. The survey residuals are modelled as multivariate normal distribution with the correlation estimated (one coefficient).

The assessment model is also used for short term forecast.
The input for the short-term forecast is shown in Tables 8.3, 8.4 and 8.7. Future weights, maturity, and selectivity are assumed to be the same as in the assessment year, as described in the stock annex. Recruitment predictions are based on the segmented stock-recruitment function estimated in the assessment model which is essentially geometric mean when the stock is above estimated break point that is near Bloss.

The landings for the ongoing calendar year are predicted based on the 20% HCR, with the calendar year landings consisting of remainder the ongoing fishing year's TAC and $1 / 3$ of the next fishing year's TAC. Looking at last two fishing years where the TAC was not caught the value obtained is likely to be an overestimate but trends in landings (figure 8.2) indicate that the TAC might be reached.

8.5 Reference points and HCR

In April 2013, the Icelandic government adopted a management plan for managing the Icelandic saithe fishery (Ministry of Industries and Innovation 2013). ICES evaluated this management plan and concluded that it was in accordance with the precautionary approach and the ICES MSY framework. In the harvest control rule (HCR) evaluation (ICES 2013) Blim was defined as 61 kt , based on Bloss as estimated in 2010, and $B_{\text {triger }}$ was defined as 65 kt , based on an estimated hockey-stick recruitment function.
The TAC set in year t is for the upcoming fishing year, from 1 September in year t, to 31 August in year $t+1$. The 20% HCR consists of two equations, as follows.
When $S S B \geq B_{\text {trigger, }}$, the TAC set in year y equals the average of 0.20 times the current biomass and last year's TAC:

$$
\begin{equation*}
T A C_{y+1 / l y}=0.5 \times 0.20 B_{y, 4+}+0.5 T_{A C} C_{y / y-1} \tag{Eq.1}
\end{equation*}
$$

When SSB is below $B_{\text {trigger, }}$ the harvest rate is reduced below 0.20 :

$$
\begin{equation*}
\left.T A C_{y+1 / y}=S^{2} B_{y} / B_{\text {trigger }}\left[\left(1-0.5 S S B_{y} / B_{\text {triger }}\right) 0.20 B_{t, 4)}\right)+0.5 T A C 7_{y / y-1}\right] \tag{Eq.2}
\end{equation*}
$$

Equation 1 is a plain average of two numbers. Equation 2 is continuous over $S S B_{y} / B$ trigerer, so the rule does not lead to very different TAC when $S S B_{y}$ is slightly below or above $B_{\text {trigger }}$.

At the NWWG meeting 2016 definition of $B_{l i m}$ and $B_{p a}$ were revisited. Also $F_{p a}$ and Flim were defined but these points were not considered necessary when the HCR was evaluated in 2013. The new values of $B_{\lim }$ and $B_{p a}$ were 44 and 61 thous. tonnes.

8.6 State of the stock

The results of the principal stock quantities (Table 8.6 and Figure 8.14) show that the reference biomass (B4+) has historically ranged from 130 to 410 kt (in 1999 and 1988), but this range has been narrower since 2003, between 220 and 327 kt . The current estimated stock size of B4+ of 490 kt is the highest in the time series (1980 to the present). Spawning biomass is estimated as 232 kt , the highest in the timeseries.

The harvest rate peaked around 30% in the mid 1990 's, but has been below the HCR target of 20% since in last 3 years. The explanations are that the allocated TAC has not been fished and current assessment is a significant upward revision of stock size. Fishing mortality has been low since 2004 compared to before that. Part of the difference is caused by change in selection pattern that leads to F before and after 2004 not being comparable. SSB has been at a relatively high level during the last ten years.

Recruitment has been relatively stable since year class 2006, above average. Yearclasses 2012-2014 are estimated to be strong. The details of the fishing mortality and stock in numbers are presented in Tables 8.7 and 8.8.

The predicted landings in 2018 are 70 kt , what is left of the TAC 2017/18 in the beginning of the year 2018 plus $1 / 3^{\text {rd }}$ of the TAC 2018/19 (79 kt). Assumptions about catches in 2018 have no effect on the TAC 2018/19 that is based on the biomass in the beginning of the year 2018.

8.7 Uncertainties in assessment and forecast

The assessment of Icelandic saithe is relatively uncertain due to fluctuations in the survey data, poor recruitment estimates and irregular changes in the fleet selectivity. The internal consistency in the spring bottom trawl survey is low for saithe. This is not surprising, considering the nature of the species that is partly pelagic, schooling, and relatively widely migrating. There are also indications of time-varying selectivity, so changes in the commercial catch at age may not reflect changes in the age distribution of the population. The retrospective pattern (Figure 8.19) reveals some of the assessment uncertainty. The harvest control rule evaluations incorporated uncertainties om assessment estimates, among other sources of uncertainty (ICES 2013).

Using retrospective pattern based on the assessment years 2005-2018 Mohns rho for the reference biomass is $-0.114,-0.118$ for the SSB and -0.26 for recruitment. Those values are based on comparing estimated values in the beginning of the assessment year to values estimated in 2018. (the 2018 value is of course estimated). What matters here is of course retrospective pattern of the reference biomass. Mohns rho for the fishing mortality is 0.143 .

The results from the default separable assessment model (ADSEP) are compared to alternative model configuration, both in terms of how fishing mortality are modelled and treatment of survey indices.

NR	TYPE OF MODEL AND SETTINGS	B4+ $\mathbf{2 0 1 8}$	TAC
1	Separable 3 period	490	79.1
2	Separable 1 period	527	82.8
3	Separable 3 periods less weight on survey	275	57.6
4	Separable 3 periods survey outliers not included	525	82.7

5	Separable 3 periods random walk	418	72
6	VPA	538	84
7	Cod model flexible selection pattern, random walk	417	71.9
8	Stdsam	466	76.8
9	Sam different settings	456	75.8

(* CV of survey is estimated automatically but weighted down to 5% here). All models except model 7-9 are based on more or less same code. Model 4 uses different data, i.e. survey indices are compiled by Winchorizing. Std SAM are the default settings while number of observation parameters has been increased in the other SAM run.

The results of the different models can be somewhat different (figure 8.21 and table above) with B4+ in 2018 (the number that matters for the advice) ranging from 275 thous. tonnes to 538 thous. tonnes. The highest number is from an Adapt type model and the lowest numbers from model with very low weight on the survey (the survey practically ignored). Adapt type models have not been considered suitable for this stock as they do not utilize the information included in the catch data, which is a problem when survey data are as noisy as they are here. The extreme models are model not using the survey (\#4) and model only using the survey (\#6). The general trend is that the survey indicates larger stock than catch data.

Taking the catch at age models tuned with the survey the range of B4+2018 is from 417525. The lowest values are from models incorporating random walk in fishing mortality while the highest value is from a model assuming 1 selection period, settings that are questionable (figure 8.13) This difference between models is well within what could be expected according to precision of the stock estimate $C V(B 4+)=0.2$. The assessment indicates higher stock than last year's assessment (figures 8.15, 8.19). The retrospective pattern shows that the results do often change much by including one more year of data.

The main uncertainty in the current advisory process is the fact that the TAC has not been fished in some recent years. The assessment models indicate substantial reduction of fishing mortality and harvest rate in last 3 years, partly because the TAC has not been fished. Random walk constrain on fishing mortality works against this reduction, therefore models with random walk constraint indicate smaller stock. The selection pattern observed since 2004 (figure 8.13) indicates that the fisheries are targeting younger fish than before, something that could be interpreted as lack of large fish. This trend is even greater than observed in the figure as mean weight at age of ages $4-5$ have been low in recent years (figure 8.8) Other measures of stock size, not used directly in the assessment model like the autumn survey and gillnet survey (figures 8.10 and 8.11) do indicate that the stock is large.

The problem seen in recent years is not new and the fact that fishing mortality of saithe was never really high indicates that it might be difficult to catch. One reason is that most of the gear is demersal while saithe is partly pelagic. Change of fleet and fishing practice in recent 10-20 years might also have effects. (see section 8.9) and the conclusions of that section is really that there is nothing wrong with the saithe assessment, change in fishing patterns and gear composition of the fleet is increasing the problem of catching the saithe quota.

8.8 Ecosystem considerations

Changes in the distribution of large pelagic stocks (blue whiting, mackerel, Norwegian spring-spawning herring, Icelandic summer-spawning herring) may affect the
tendency of saithe to migrate off shelf and between management units. Saithe is a migrating species and makes both vertical and long-distance feeding and spawning migrations (Armannsson et al. 2007, Armannsson and Jonsson 2012, i Homrum et al. 2013). The evidence from tagging experiments (ICES 2008) show some migrations along the Faroe-Iceland Ridge, as well as onto the East Greenland shelf.

8.9 Changes in fishing technology and fishing patterns

Before 2000 the $15-40 \%$ of the saithe was caught in gillnets but only around 5% in recent years. This change is caused by substantial reduction of gillnet boats, especially since 2007. From 1998 to 2015 increased part of the catch of cod (main target species of the Icelandic demersal fleet) was caught by longliners. The fleet has changed so the number of longliners is increasing but the number of gillnets boats, boats operating Danish seine and trawlers is decreasing. Longliners do hardly catch saithe but the other 3 gear types are all catching saithe.

Reduced harvest rate of cod that seems to be a more easily caught fish leads to saithe fishing being difficult without catching too much cod. Large part of the cod is exported fresh and the captains of many trawlers are asked to avoid cod except in the last 2 days of each fishing trip (5-6 days). Recent distribution of saithe in the Northwest area could make this a difficult stragety and having to avoid cod is an extra constraint on saithe fisheries.

Many captains complain that finding saithe is difficult and the changes in selection seen in last decade (figure 8.13) indicates that the fleet is targeting much smaller saithe than before (mean weight at age of ages 3-5 is also very low in recent years). The observed change in selection pattern indicates that the larger saithe is less available to the trawl fisheries than before. The selection pattern observed since 2004 leads to 10% less yield per recruit compared to average selection of the time period.
Looking at the catches of trawlers divided into those that freeze the catch and those that land it fresh, 50% of the catch of saithe by trawlers is taken by the freezing vessels, 50% of redfish but only 20% of the cod catch (figure 8.21). Freezing vessels are not required to catch the cod just before landing so some bycatch of cod is therefore not considered a problem there. The difference shown here could be an indication of the problem that the captains of the "fresh fish trawlers" are facing but "fresh fish trawlers" are majority of the trawlers.
Redfish is a species that has some effect on saithe fisheries. In recent years, catching redfish has been relatively easy as it can be found in very dense schools west of Iceland. Also, the distribution has changed so it is now abundant in the regions northwest of Iceland where cod and saithe is caught. Redfish is not a wanted bycatch in cod fisheries as it scratches the skin of the cod making it less valuable (less of a problem for freezing trawlers where the fish is unskinned). Therefore, the directed codfisheries are conducted with relatively large mesh size to get rid of most of redfish. A consequence is that bycatch of saithe is small as saithe in the area is relatively small.

If the conclusions above are correct, lowering the target harvest rate to get better balance in mixed fisheries. might be an option. A harvest rate of 16% next year would lead to 70 thous. tonnes TAC in next year and probably little change in the following years. There are still no indications that the premises behind the HCR evaluations in 2013 need to be investigated again, the problem described is a mixed fisheries problem. Harvest rate of 16% is well below the maximum that would be considered in conformity with the ICES MSY approach that, is 20% or higher.

8.10 References

Armannsson, H. and S.T. Jonsson. 2012. Vertical migrations of saithe (Pollachius virens) in Icelandic waters as observed with data storage tags. ICES J. Mar. Sci. 69:1372-1381.

Armannsson, H., S.T. Jonsson, J.D. Neilson, and G. Marteinsdottir. 2007. Distribution and migration of saithe (Pollachius virens) around Iceland inferred from mark-recapture studies. ICES J. Mar. Sci. 64:1006-1016.
Gudmundsson, G. 2013. Fish stock assessment by time series analysis. ICES NWWG WD29.
i Homrum, E., B. Hansen, S.T. Jonsson, K. Michalsen, J. Burgos, D. Righton, P. Steingrund, T. Jakobsen, R. Mouritsen, H. Hatun, H. Armannsson, and J.S. Joensen. 2013. Migration of saithe (Pollachius virens) in the Northeast Atlantic. ICES J. Mar. Sci. 70:782-792.

ICES. 2008. Report of the North-Western Working Group (NWWG). ICES CM 2008/ACOM:03.
ICES. 2010. Report of the Benchmark Workshop on Roundfish (WKROUND). ICES CM 2010/ACOM:36.

ICES. 2013. Report of the evaluation of the Icelandic saithe management plan. ICES CM 2013/ACOM:60.

Magnusson, A. 2012. Icelandic saithe: New model to predict current weight at age. ICES NWWG WD30.

Magnusson, A. 2013. Mathematical properties of the Icelandic saithe HCR. ICES NWWG WD 31.

Ministry of Industries and Innovation. 2013. Adoption of management plan for Icelandic saithe. Letter to ICES, dated 22 Apr 2013.
Palsson, O.K., G. Karlsson, A. Arason, G.R. Gislason, G. Johannesson, and S. Adalsteinsson. 2003. Discards in demersal Icelandic fisheries 2002. Mar. Res. Inst. Rep. 94.

Thordarson, G. 2012. Sampling of demersal fish stocks from commercial catches and surveys: Flatfish and elongated species. Report for the Marine Research Institute.

Table 8.1. Saithe in division Va. Nominal catch (t) by countries, as officially reported to ICES.

	Belgium	Faroes	France	Germany	Iceland	Norway	UK $(\mathrm{E} / \mathrm{W} / \mathrm{NI})$	UK (Scot)	UK	Total
1980	980	4930			52436	1				58347
1981	532	3545			54921	3				59001
1982	201	3582	23		65124	1				68931
1983	224	2138			55904					58266
1984	269	2044			60406					62719
1985	158	1778			55135	1	29			57101
1986	218	2291			63867					66376
1987	217	2139			78175					80531
1988	268	2596			74383					77247
1989	369	2246			79796					82411
1990	190	2905			95032					98127
1991	236	2690			99811					102737
1992	195	1570			77832					79597
1993	104	1562			69982					71648
1994	30	975		1	63333					64339
1995		1161		1	47466	1				48629
1996		803		1	39297					40101
1997		716			36548					37264
1998		997		3	30531					31531
1999		700		2	30583	6	1	1		31293
2000		228		1	32914	1	2			33146
2001		128		14	31854	44	23			32063
2002		366		6	41687	3	7	2		42071
2003		143		56	51857	164			35	52255
2004		214		157	62614	1	105			63091
2005		322		224	67283	2			312	68143
2006		415		33	75197	2			16	75663
2007		392			64008	3			30	64433
2008		196			69992	2				70190
2009		269			61391	3				61663
2010		499			53772	1				54272
2011		735			50386	2				51123
2012		940			50843					51783
2013		925			57077					58002
2014		746			45733	4				46483
2015		499			47973	3				48473
2016		287			48920	5				49212
2017		261			48786	4			4	49057

Table 8.2. Saithe in division Va. Commercial catch at age (thousands).

YEAR	3	4	5	6	7	8	9	10	11	12+
1980	275	2540	5214	2596	2169	1341	387	262	155	209
1981	203	1325	3503	5404	1457	1415	578	242	61	417
1982	508	1092	2804	4845	4293	1215	975	306	59	129
1983	107	1750	1065	2455	4454	2311	501	251	38	18
1984	53	657	800	1825	2184	3610	844	376	291	546
1985	376	4014	3366	1958	1536	1172	747	479	74	166
1986	3108	1400	4170	2665	1550	1116	628	1549	216	95
1987	956	5135	4428	5409	2915	1348	661	496	498	133
1988	1318	5067	6619	3678	2859	1775	845	226	270	132
1989	315	4313	8471	7309	1794	1928	848	270	191	221
1990	143	1692	5471	10112	6174	1816	1087	380	151	168
1991	198	874	3613	6844	10772	3223	858	838	228	51
1992	242	2928	3844	4355	3884	4046	1290	350	196	125
1993	657	1083	2841	2252	2247	2314	3671	830	223	281
1994	702	2955	1770	2603	1377	1243	1263	2009	454	428
1995	1573	1853	2661	1807	2370	905	574	482	521	154
1996	1102	2608	1868	1649	835	1233	385	267	210	447
1997	603	2960	2766	1651	1178	599	454	125	95	234
1998	183	1289	1767	1545	1114	658	351	265	120	251
1999	989	732	1564	2176	1934	669	324	140	72	75
2000	850	2383	896	1511	1612	1806	335	173	57	57
2001	1223	2619	2184	591	977	943	819	186	94	69
2002	1187	4190	3147	2970	519	820	570	309	101	53
2003	2284	4363	6031	2472	1942	285	438	289	196	72
2004	952	7841	7195	5363	1563	1057	211	224	157	124
2005	2607	3089	7333	6876	3592	978	642	119	149	147
2006	1380	10051	2616	5840	4514	1989	667	485	118	229
2007	1244	6552	8751	2124	2935	1817	964	395	190	99
2008	1432	3602	5874	6706	1155	1894	1248	803	262	307
2009	2820	5166	2084	2734	2883	777	1101	847	555	373
2010	2146	6284	3058	997	1644	1571	514	656	522	409
2011	2004	4850	4006	1502	677	1065	1145	323	433	469
2012	1183	4816	3514	2417	903	432	883	1015	354	549
2013	1163	5538	6366	2963	1610	664	375	537	460	320
2014	668	3499	4867	2805	1276	725	347	241	312	401
2015	781	2712	6461	2917	1509	694	589	249	133	347
2016	1588	6230	2653	2838	1648	1059	526	337	148	131
2017	750	3333	7542	1806	1449	813	648	229	127	237

Table 8.3. Saithe in division Va. Mean weight at age (g) in the catches and in the spawning stock, with predictions in gray.

YEAR	3	4	5	6	7	8	9	10	11	12+
1980	1428	1983	2667	3689	5409	6321	7213	8565	9147	9979
1981	1585	2037	2696	3525	4541	6247	6991	8202	9537	9523
1982	1547	2194	3015	3183	5114	6202	7256	7922	8924	10021
1983	1530	2221	3171	4270	4107	5984	7565	8673	8801	9445
1984	1653	2432	3330	4681	5466	4973	7407	8179	8770	10520
1985	1609	2172	3169	3922	4697	6411	6492	8346	9401	10767
1986	1450	2190	2959	4402	5488	6406	7570	6487	9616	11080
1987	1516	1715	2670	3839	5081	6185	7330	8025	7974	10886
1988	1261	2017	2513	3476	4719	5932	7523	8439	8748	9823
1989	1403	2021	2194	3047	4505	5889	7172	8852	10170	11194
1990	1647	1983	2566	3021	4077	5744	7038	7564	8854	11284
1991	1224	1939	2432	3160	3634	4967	6629	7704	9061	9547
1992	1269	1909	2578	3288	4150	4865	6168	7926	8349	10181
1993	1381	2143	2742	3636	4398	5421	5319	7006	8070	9842
1994	1444	1836	2649	3512	4906	5539	6818	6374	8341	10388
1995	1370	1977	2769	3722	4621	5854	6416	7356	6815	8799
1996	1229	1755	2670	3802	4902	5681	7182	7734	9256	9601
1997	1325	1936	2409	3906	5032	6171	7202	7883	8856	9865
1998	1347	1972	2943	3419	4850	5962	6933	7781	8695	10043
1999	1279	2106	2752	3497	3831	5819	7072	8078	8865	10872
2000	1367	1929	2751	3274	4171	4447	6790	8216	9369	10443
2001	1280	1882	2599	3697	4420	5538	5639	7985	9059	10419
2002	1308	1946	2569	3266	4872	5365	6830	7067	9240	10190
2003	1310	1908	2545	3336	4069	5792	7156	8131	8051	10825
2004	1467	1847	2181	2918	4017	5135	7125	7732	8420	9547
2005	1287	1888	2307	2619	3516	5080	6060	8052	8292	8569
2006	1164	1722	2369	2808	3235	4361	6007	7166	8459	9583
2007	1140	1578	2122	2719	3495	4114	5402	6995	7792	9848
2008	1306	1805	2295	2749	3515	4530	5132	6394	7694	9589
2009	1412	1862	2561	3023	3676	4596	5651	6074	7356	9237
2010	1287	1787	2579	3469	4135	4850	5558	6289	6750	8785
2011	1175	1801	2526	3680	4613	5367	5685	6466	6851	7739
2012	1160	1668	2369	3347	4430	5486	6161	6448	7220	8236
2013	1056	1675	2219	3244	4529	5628	6397	7055	7378	8342
2014	1211	1575	2229	2983	4378	5598	6773	8023	7875	9020
2015	1072	1639	2141	3122	4262	5555	6633	7697	8269	8773
2016	1105	1468	2260	3071	4127	5272	6379	7247	8566	8969
2017	1282	1674	2199	3255	4314	5718	6361	7630	8590	9238
2018	1153	1766	2314	2964	4159	5381	6933	7525	8475	8989
2019	1153	1766	2314	2964	4159	5381	6933	7525	8475	8992

Table 8.4. Saithe in division Va. Maturity at age, with predictions in gray.

YEA \mathbf{R}	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$		$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$									
$\mathbf{1}$	$\mathbf{2}$									
1980	0	0.083	0.188	0.372	0.603	0.796	0.909	1	1	1
1981	0	0.083	0.188	0.372	0.603	0.796	0.909	1	1	1
1982	0	0.083	0.188	0.372	0.603	0.796	0.909	1	1	1
1983	0	0.083	0.188	0.372	0.603	0.796	0.909	1	1	1
1984	0	0.083	0.188	0.372	0.603	0.796	0.909	1	1	1
1985	0	0.083	0.188	0.372	0.603	0.796	0.909	1	1	1

1986	0	0.074	0.171	0.345	0.575	0.776	0.899	1	1	1
1987	0	0.067	0.156	0.321	0.548	0.757	0.888	1	1	1
1988	0	0.061	0.143	0.3	0.523	0.738	0.878	1	1	1
1989	0	0.057	0.133	0.283	0.503	0.722	0.869	1	1	1
1990	0	0.054	0.127	0.271	0.488	0.71	0.863	1	1	1
1991	0	0.052	0.123	0.265	0.481	0.704	0.859	1	1	1
1992	0	0.052	0.123	0.265	0.481	0.704	0.859	1	1	1
1993	0	0.054	0.127	0.272	0.489	0.711	0.863	1	1	1
1994	0	0.057	0.135	0.286	0.507	0.725	0.871	1	1	1
1995	0	0.064	0.148	0.309	0.534	0.746	0.883	1	1	1
1996	0	0.073	0.168	0.341	0.57	0.773	0.897	1	1	1
1997	0	0.087	0.196	0.385	0.616	0.804	0.913	1	1	1
1998	0	0.105	0.231	0.435	0.664	0.835	0.928	1	1	1
1999	0	0.126	0.27	0.486	0.708	0.862	0.941	1	1	1
2000	0	0.147	0.307	0.532	0.744	0.882	0.95	1	1	1
2001	0	0.165	0.336	0.565	0.769	0.895	0.956	1	1	1
2002	0	0.174	0.351	0.581	0.78	0.901	0.959	1	1	1
2003	0	0.173	0.35	0.58	0.779	0.901	0.959	1	1	1
2004	0	0.165	0.337	0.566	0.77	0.895	0.956	1	1	1
2005	0	0.154	0.318	0.544	0.754	0.887	0.953	1	1	1
2006	0	0.142	0.297	0.52	0.735	0.877	0.948	1	1	1
2007	0	0.131	0.28	0.499	0.718	0.867	0.944	1	1	1
2008	0	0.125	0.268	0.484	0.706	0.86	0.941	1	1	1
2009	0	0.121	0.261	0.475	0.699	0.856	0.938	1	1	1
2010	0	0.119	0.257	0.47	0.694	0.853	0.937	1	1	1
2011	0	0.117	0.253	0.465	0.691	0.851	0.936	1	1	1
2012	0	0.115	0.25	0.46	0.686	0.849	0.935	1	1	1
2013	0	0.112	0.244	0.452	0.679	0.844	0.933	1	1	1
2014	0	0.107	0.234	0.44	0.668	0.838	0.93	1	1	1
2015	0	0.1	0.222	0.423	0.653	0.828	0.925	1	1	1
2016	0	0.093	0.209	0.403	0.634	0.816	0.919	1	1	1
2017	0	0.086	0.194	0.382	0.613	0.802	0.912	1	1	1
2018	0	0.079	0.18	0.36	0.591	0.787	0.905	1	1	1
2019	0	0.079	0.18	0.36	0.591	0.787	0.905	1	1	1
										1
10										

Table 8.5. Saithe in division Va. Survey indices at age.

YEA	2	3	4	5	6	7	8	9	10
R									
1985	0.59	0.56	3.1	5.31	1.8	1.09	0.51	1.4	0.15
1986	2.3	2.46	2.15	2.2	1.49	0.65	0.3	0.19	0.33
1987	0.38	11.84	13.22	6.61	4.08	3.18	0.82	0.37	0.27
1988	0.31	0.47	2.74	2.85	1.75	0.98	0.41	0.07	0.08
1989	1.42	3.95	5.09	6.65	2.53	1.81	0.92	0.4	0
1990	0.34	1.71	4.96	6.42	12.51	3.37	1.23	0.65	0.12
1991	0.22	1.38	1.7	2.18	1.12	2.49	0.31	0.02	0.03
1992	0.14	0.91	5.88	5.65	2.84	2.72	1.94	0.28	0.06
1993	1.27	11.03	1.89	6.59	2.34	2.19	1.02	3.94	0.66
1994	0.81	0.74	1.93	1.78	2	0.53	0.81	0.94	3.48
1995	0.49	1.98	1.12	0.52	0.29	0.34	0.1	0.15	0.15
1996	0.13	0.49	3.78	1.16	1.03	0.59	0.98	0.06	0.09
1997	0.32	0.91	4.73	3.98	0.95	0.4	0.16	0.1	0.05
1998	0.13	1.66	2.36	2.55	1.27	0.72	0.3	0.09	0.07
1999	0.73	3.74	0.94	1.27	1.7	0.59	0.16	0.02	0.02
2000	0.38	2.01	2.55	0.61	0.86	0.54	0.45	0.08	0.03
2001	0.92	2.06	2.73	1.68	0.22	0.23	0.39	0.14	0.07
2002	1.02	2.23	3.01	3.11	2.19	0.42	0.47	0.32	0.22
2003	0.05	9.79	5.14	2.98	1.37	0.78	0.21	0.05	0.1
2004	0.9	1.39	9.6	6.27	4.52	1.52	0.84	0.17	0.17
2005	0.25	4.29	2.41	7.5	4.72	2.36	0.88	0.45	0.13
2006	0	2.19	6.76	1.98	8.85	3.5	1.21	0.29	0.25
2007	0.06	0.31	1.75	3.27	0.82	1.64	0.71	0.29	0.16
2008	0.08	2.26	1.81	2.88	4.05	0.62	0.79	0.34	0.15
2009	0.21	2.45	1.85	0.69	0.91	0.84	0.12	0.26	0.15
2010	0.07	1.24	5.07	2.55	0.64	0.61	0.47	0.07	0.12
2011	0.15	3.84	4.24	3.1	1.17	0.41	0.39	0.44	0.17
2012	0.02	1.77	12.01	6.75	2.76	0.63	0.17	0.38	0.5
2013	0.11	4.28	7.57	6.85	4.67	2.58	1.12	0.3	0.43
2014	0.03	0.39	3.89	3.74	2.02	0.87	0.42	0.15	0.11
2015	0.04	1.08	1.93	3.22	1.73	0.82	0.72	0.66	0.43
2016	0.05	3.17	16.21	2.75	2.27	1.08	0.53	0.44	0.28
2017	0.02	1.48	6.67	14.64	3.03	1.68	0.87	0.45	0.3
2018	0.03	0.5	17.92	10.5	15.28	1.51	0.84	0.43	0.32

Table 8.6. Saithe in division Va. Main population estimates.

YEAR	B4+	SSB	N3	Yield	F4-9	HR
1980	312	113	28	58	0.29	18.5
1981	305	120	20	58	0.26	18.9
1982	295	137	22	68	0.3	23
1983	270	137	32	57	0.24	20.9
1984	287	140	42	60	0.23	21
1985	300	138	35	54	0.24	17.9
1986	319	136	67	65	0.28	20.4
1987	336	128	91	80	0.35	23.9
1988	416	124	51	77	0.32	18.6
1989	399	128	32	82	0.31	20.6
1990	378	135	21	98	0.35	25.8
1991	337	145	29	102	0.37	30.3
1992	289	137	15	80	0.37	27.6
1993	231	113	20	72	0.4	31
1994	188	94	18	64	0.45	33.9
1995	153	70	30	48	0.46	31.5
1996	150	60	26	39	0.4	26.3
1997	157	61	17	37	0.36	23.4
1998	155	68	9	31	0.29	19.8
1999	133	73	31	31	0.31	23.2
2000	144	75	31	33	0.32	22.7
2001	164	83	55	32	0.27	19.2
2002	223	101	64	42	0.29	18.9
2003	284	126	72	52	0.29	18.4
2004	325	145	26	65	0.26	19.9
2005	291	154	73	69	0.28	23.8
2006	317	160	42	75	0.3	23.8
2007	289	155	19	64	0.28	22.3
2008	258	153	27	69	0.32	26.9
2009	234	142	40	60	0.3	25.8
2010	235	132	39	54	0.27	22.9
2011	244	127	50	51	0.24	20.8
2012	257	126	48	51	0.23	19.9
2013	275	133	51	58	0.25	20.9
2014	287	139	34	46	0.18	15.9
2015	296	153	101	48	0.17	16.4
2016	378	172	57	49	0.15	13
2017	440	202	61	49	0.12	11.2
2018	490	233	15			
Average 1980-2017	278	127	40	59	0.29	22.1

Table 8.7. Saithe in division Va. Stock in numbers. Shaded area is input to prediction.

YEAR	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
1980	32.3	24.7	28.3	46.8	30.9	10.3	8.2	3.7	1.3	0.7	0.7	0.5	0.3	0.1
1981	47.9	26.4	20.2	22.8	35.2	21.2	6.3	4.6	2	0.7	0.4	0.4	0.3	0.2
1982	62.7	39.2	21.6	16.3	17.3	24.6	13.3	3.7	2.6	1.1	0.4	0.2	0.2	0.2
1983	52.7	51.3	32.1	17.4	12.2	11.8	14.8	7.5	1.9	1.4	0.6	0.2	0.1	0.1
1984	100.5	43.1	42	25.9	13.3	8.6	7.6	9	4.3	1.1	0.8	0.4	0.1	0.1
1985	136.3	82.3	35.3	34	19.8	9.5	5.6	4.7	5.2	2.6	0.7	0.5	0.2	0.1
1986	75.8	111.6	67.4	28.5	25.9	14	6.1	3.4	2.7	3.1	1.5	0.4	0.3	0.1
1987	47.4	62	91.3	54.3	21.5	17.9	8.7	3.5	1.8	1.5	1.6	0.8	0.2	0.2
1988	31	38.8	50.8	73.3	40.1	14.3	10.3	4.6	1.7	0.9	0.7	0.9	0.5	0.1
1989	43.9	25.4	31.8	40.8	54.7	27.1	8.5	5.7	2.3	0.9	0.5	0.4	0.5	0.2

1990	22.1	36	20.8	25.6	30.6	37.2	16.3	4.7	2.9	1.3	0.5	0.3	0.2	0.3
1991	29.6	18.1	29.5	16.7	18.9	20.3	31.4	8.7	2.3	1.5	0.6	0.2	0.1	0.1
1992	26.4	24.3	14.8	23.6	12.3	12.4	11.4	16.2	4.1	1.1	0.7	0.3	0.1	0.1
1993	44.7	21.6	19.9	11.9	17.4	8	7	5.9	7.7	2	0.5	0.4	0.2	0.1
1994	38.3	36.6	17.7	15.9	8.7	11.2	4.4	3.5	2.7	3.6	0.9	0.3	0.2	0.1
1995	25.3	31.4	30	14.1	11.4	5.4	5.8	2.1	1.5	1.2	1.5	0.4	0.1	0.1
1996	13	20.7	25.7	23.9	10.1	7.1	2.8	2.7	0.9	0.6	0.5	0.7	0.2	0.1
1997	45.7	10.6	17	20.6	17.4	6.5	3.9	1.4	1.2	0.4	0.3	0.2	0.4	0.1
1998	46.9	37.5	8.7	13.4	14.6	11.3	3.9	2.1	0.7	0.6	0.2	0.1	0.1	0.2
1999	81.4	38.4	30.7	6.9	9.8	9.9	7.2	2.3	1.1	0.4	0.3	0.1	0.1	0.1
2000	95.5	66.7	31.5	24.4	5	6.6	6.2	4.2	1.2	0.6	0.2	0.2	0.1	0
2001	107.7	78.2	54.6	25	17.6	3.3	4.1	3.5	2.2	0.6	0.3	0.1	0.1	0
2002	38.5	88.2	64	43.5	18.3	12.1	2.2	2.5	2	1.2	0.3	0.2	0.1	0
2003	109.2	31.5	72.2	50.9	31.7	12.5	7.7	1.3	1.3	1	0.6	0.2	0.1	0
2004	63.3	89.4	25.8	57.5	37.2	21.6	8	4.5	0.7	0.7	0.5	0.3	0.1	0
2005	28.4	51.9	73.2	20.4	38.9	23.2	13.3	5	2.9	0.4	0.4	0.3	0.2	0.1
2006	40.3	23.2	42.5	57.5	13.5	23.7	14	8.2	3.1	1.7	0.2	0.2	0.2	0.1
2007	59.9	33	19	33.2	37.6	8.1	13.9	8.4	5	1.8	1	0.1	0.1	0.1
2008	58.6	49.1	27	14.9	22.2	23	4.9	8.6	5.3	3	1.1	0.5	0.1	0.1
2009	74.2	48	40.2	21.1	9.7	13	13.3	2.9	5.2	3	1.7	0.6	0.3	0
2010	72	60.8	39.3	31.5	13.9	5.8	7.7	8.1	1.8	3.1	1.7	0.9	0.3	0.2
2011	75.9	59	49.8	30.9	21.2	8.6	3.5	4.8	5.1	1.1	1.8	1	0.5	0.2
2012	50.3	62.1	48.3	39.3	21.2	13.4	5.4	2.3	3.1	3.2	0.7	1.1	0.6	0.3
2013	151.3	41.2	50.9	38.2	27.1	13.5	8.5	3.5	1.5	2	2	0.4	0.6	0.3
2014	85.3	123.9	33.7	40.2	26	17.1	8.4	5.4	2.2	0.9	1.2	1.1	0.2	0.4
2015	90.3	69.9	101.4	26.9	28.7	17.6	11.4	5.7	3.7	1.5	0.6	0.8	0.7	0.1
2016	22.8	73.9	57.2	81	19.4	19.6	11.9	7.9	4	2.5	1	0.4	0.5	0.5
2017	48.4	18.7	60.5	45.8	59.2	13.5	13.6	8.4	5.5	2.8	1.7	0.7	0.3	0.3
2018	52.3	39.6	15.3	48.7	34.3	42.6	9.7	9.8	6.1	4	1.9	1.2	0.5	0.2
2019	52.7	42.8	32.5	12.2	35.3	23.6	29.1	6.7	6.9	4.2	2.7	1.3	0.8	0.3
2020	52.7	43.2	35	25.8	8.6	23.4	15.5	19.5	4.5	4.5	2.7	1.6	0.8	0.5

Table 8.8. Saithe in division Va. Fishing mortality rate. Shaded areas show predictions i.e where catches are unknown.

Year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
1980	0.016	0.085	0.178	0.295	0.362	0.437	0.407	0.437	0.358	0.358	0.358	0.358
1981	0.015	0.076	0.159	0.263	0.324	0.39	0.363	0.39	0.32	0.32	0.32	0.32
1982	0.017	0.088	0.183	0.304	0.374	0.45	0.419	0.45	0.369	0.369	0.369	0.369
1983	0.014	0.07	0.147	0.243	0.299	0.36	0.336	0.36	0.295	0.295	0.295	0.295
1984	0.013	0.067	0.14	0.231	0.285	0.343	0.319	0.343	0.281	0.281	0.281	0.281
1985	0.014	0.071	0.148	0.245	0.302	0.364	0.339	0.364	0.298	0.298	0.298	0.298
1986	0.016	0.082	0.17	0.282	0.347	0.419	0.39	0.419	0.343	0.343	0.343	0.343
1987	0.02	0.102	0.212	0.351	0.432	0.521	0.485	0.521	0.426	0.426	0.426	0.426
1988	0.018	0.093	0.195	0.323	0.397	0.479	0.446	0.479	0.392	0.392	0.392	0.392
1989	0.017	0.089	0.185	0.307	0.378	0.455	0.423	0.455	0.372	0.372	0.372	0.372
1990	0.019	0.101	0.211	0.35	0.43	0.519	0.483	0.519	0.425	0.425	0.425	0.425
1991	0.021	0.108	0.226	0.375	0.461	0.555	0.517	0.555	0.455	0.455	0.455	0.455
1992	0.02	0.106	0.221	0.367	0.452	0.544	0.507	0.544	0.446	0.446	0.446	0.446
1993	0.022	0.115	0.24	0.398	0.49	0.59	0.549	0.59	0.483	0.483	0.483	0.483
1994	0.025	0.131	0.272	0.451	0.555	0.669	0.622	0.669	0.547	0.547	0.547	0.547
1995	0.026	0.133	0.278	0.46	0.566	0.682	0.635	0.682	0.559	0.559	0.559	0.559
1996	0.022	0.116	0.243	0.402	0.495	0.596	0.555	0.596	0.488	0.488	0.488	0.488
1997	0.035	0.144	0.23	0.31	0.412	0.517	0.555	0.53	0.53	0.53	0.53	0.53
1998	0.029	0.117	0.186	0.252	0.334	0.419	0.45	0.43	0.43	0.43	0.43	0.43
1999	0.03	0.122	0.194	0.262	0.348	0.437	0.469	0.448	0.449	0.449	0.449	0.449
2000	0.031	0.128	0.205	0.277	0.367	0.461	0.494	0.472	0.473	0.473	0.473	0.473
2001	0.026	0.108	0.172	0.232	0.308	0.387	0.415	0.397	0.397	0.397	0.397	0.397
2002	0.029	0.117	0.187	0.253	0.336	0.422	0.453	0.432	0.433	0.433	0.433	0.433
2003	0.028	0.115	0.184	0.248	0.329	0.413	0.444	0.424	0.424	0.424	0.424	0.424

2004	0.038	0.19	0.27	0.281	0.261	0.251	0.28	0.316	0.358	0.358	0.358	0.358
2005	0.041	0.207	0.296	0.307	0.286	0.275	0.306	0.345	0.392	0.392	0.392	0.392
2006	0.045	0.223	0.319	0.331	0.308	0.296	0.33	0.372	0.422	0.422	0.422	0.422
2007	0.041	0.204	0.291	0.303	0.281	0.271	0.302	0.34	0.386	0.386	0.386	0.386
2008	0.047	0.235	0.335	0.348	0.323	0.311	0.347	0.391	0.444	0.444	0.444	0.444
2009	0.044	0.22	0.314	0.326	0.303	0.291	0.325	0.367	0.416	0.416	0.416	0.416
2010	0.039	0.197	0.281	0.292	0.271	0.261	0.291	0.328	0.372	0.372	0.372	0.372
2011	0.036	0.18	0.256	0.266	0.247	0.238	0.265	0.299	0.34	0.34	0.34	0.34
2012	0.034	0.172	0.245	0.255	0.237	0.228	0.254	0.287	0.325	0.325	0.325	0.325
2013	0.037	0.184	0.262	0.273	0.253	0.244	0.272	0.306	0.348	0.348	0.348	0.348
2014	0.027	0.135	0.192	0.2	0.185	0.178	0.199	0.224	0.254	0.254	0.254	0.254
2015	0.025	0.126	0.18	0.187	0.174	0.167	0.187	0.21	0.239	0.239	0.239	0.239
2016	0.023	0.113	0.162	0.168	0.156	0.15	0.167	0.189	0.214	0.214	0.214	0.214
2017	0.018	0.089	0.128	0.133	0.123	0.119	0.132	0.149	0.169	0.169	0.169	0.169
2018	0.024	0.122	0.174	0.181	0.168	0.162	0.181	0.203	0.231	0.231	0.231	0.231
2019	0.03	0.148	0.211	0.219	0.204	0.196	0.219	0.247	0.28	0.28	0.28	0.28

Table 8.9. Saithe in division Va. Output from short-term projections.

2018						
B4+	SSB	Fbar	Landings			
490	233	0.165	70			
				2020		
2019				SSB	Rationale	
B4+	SSB	Fbar	Landings	B4+		
452	259	0.2	81	417	263	20% HCR

$20 \% \mathrm{HCR}=$ average between $0.2 \mathrm{~B} 4+$ (current year) and last year's TAC.

Figure 8.1 Saithe in Division Va. Total landings and percent by gear.

Ufsi - 19. apríl 2018

Byggt á gögnum Fiskistofu um landanir

Figure 8.2 Saithe in division Va. Upper figure. Cumulative landings in the current fishing year (left) and calendar year (right). The vertical (green line) in the left figure shows the quota for the current fishing year. Lower figure. Transfer of quota to next fishing year, unused quota and transfer from other species (negative transfer from other species means transfer to other species).

Figure 8.3 Saithe in division Va. Percent of landings by regions defined in figure 8.4.

Figure 8.4 Saithe in division Va. Left, definitions of regions used in figures 8.3 and 8.6. Right, stations added in the autumn survey in 2000 (red dots).

Figure 8.5. Catch in numbers 2017 compared to last years prediction.

Figure 8.6. Catch in numbers 2000-2017 compiled by 1 region and 1 time interval (old) compared to catch in numbers compiled by 2 regions and 2 time interval (new). The regions are shown in figure 8.4, north red and yellow and south blue and black.

Figure 8.7 Saithe in division Va. Weight at age in the survey, as relative deviations from the mean.

Figure 8.8 Saithe in division Va. Weight at age in the catches, as relative deviations from the mean. Blue bars show prediction.

Figure 8.9 Saithe in division Va. Maturity at age used for calculating the SSB.

Figure 8.10 Saithe in division Va. Biomass index from the groundfish surveys in March and October.

Figure 8.11 Saithe in division Va Indices from the gillnet survey in April 1996-2018. Saithe was not length measured in the survey before 2002 so catch in kg cannot be compiled. (add 2018)

Figure 8.12 Saithe in division Va Survey indices by age from the spring survey.

Figure 8.13. Estimated selectivity patterns for the 3 periods, 1980-1996, 1997-2003 and 2014-2016.

Figure 8.14. Saithe in division Va. Results from the fitted model and short-term forecast. The red line indicates the time of the current assessment.

Figure 8.15. Saithe in division Va. Comparison of this year's assessment and short term forecast with results from two earlier years.

Figure 8.16. Saithe in division Va. Observed and predicted survey biomass from the "SPALY model".

Figure 8.17. Saithe in division Va. Survey residuals from the "SPALY model".

Figure 8.18. Saithe in division Va. Catch residuals from the "SPALY model".

Figure 8.19. Saithe in division Va. Retrospective pattern for the assessment model. The figure shows estimate of B4+. The grey vertical lines shows the year 2018.

Figure 8.20. Saithe in division Va. Comparison between the default separable model (ADSEP) and alternative assessment model settings.

Figure 8.21. Saithe in division Va. Catch by trawlers divided between those that freeze the catch and those that do not. Number of trawlers landing has been reducing gradually from 73 in 2008 to 63 in 2017 (including vessels landing > 500 t each year) but the number of freezing trawlers has been $\mathbf{1 7 - 1 8}$ all the time. The freezing trawlers have therefore been $\mathbf{2 0 - 2 8} \%$ of the total number of trawlers.

